Math 4300 - Homework # 2 Metric Geometries

1. In the Euclidean plane, find the coordinates of the following points on the given line using the standard ruler. Draw a picture of the standard ruler function.

(a) line: L_{-2} points: (-2, -3), (-2, -2), (-2, -3/2), (-2, 0), (-2, 1), $(-2, \pi)$

- (b) line: $L_{-2,4}$ points: (-2,8), (-1,6), (0,4), (1,2), (2,0), (3,-2), (4,-4)
- 2. In the Hyperbolic plane, find the coordinates of the following points on the given line using the standard ruler. Draw a picture of the standard ruler function.

(a) line: $_2L$ points: (2,0.0001), (2,0.4), (2,1), (2,e), (2,5), (2,10)

(b) line: ${}_{1}L_{\sqrt{10}}$ points: $(-2.16, 0.12), (-1, \sqrt{6}), (0, 3), (1, \sqrt{10}), (2, 3), (3, \sqrt{6}), (4.16, 0.12)$ (Some of the above points are approximations.)

3. In the Euclidean plane, find the distance between the given points.

(a) P = (1, 2) and Q = (3, 4)

(b) P = (-3, 1) and Q = (5, 10)

4. In the Hyperbolic plane, find the distance between the given points.

(a) P = (1, 2) and Q = (5, 6)

(b) $P = (6, \pi^2)$ and Q = (6, 2)

- 5. In the Euclidean plane, find a point P on the line $L_{3,-3}$ with coordinate -2 using the standard ruler.
- 6. In the Euclidean plane, find a ruler f for the line \overrightarrow{PQ} where f(P) = 0 and f(Q) > 0.
 - (a) P = (2,3) and Q = (2,5)
 - (b) P = (2,3) and Q = (2,-5)
 - (c) P = (2,3) and Q = (4,0)
- 7. In the Hyperbolic plane, find a ruler f for the line \overrightarrow{PQ} where f(P)=0 and f(Q)>0.
 - (a) P = (2,3) and Q = (2,1/3)
 - (b) P = (2,3) and Q = (-1,6)
- 8. Let $(\mathscr{P}, \mathscr{L}, d)$ be an metric geometry. Let $P \in \mathscr{P}$ and let ℓ be a line through P. Let r > 0 be a real number. Prove there is a point $Q \in \mathscr{P}$ with $Q \in \ell$ and d(P,Q) = r.
- 9. Prove that a line in a metric geometry has infinitely many points.
- 10. Recall from class that

$$\sinh(t) = \frac{e^t - e^{-t}}{2}$$
 $\cosh(t) = \frac{e^t + e^{-t}}{2}$

$$\tanh(t) = \frac{\sinh(t)}{\cosh(t)}$$
 $\operatorname{sech}(t) = \frac{1}{\cosh(t)}$

Prove the following are true for all $t \in \mathbb{R}$.

(a)
$$(\cosh(t))^2 - (\sinh(t))^2 = 1$$

- (b) $\cosh(t) > 0$
- (c) $(\tanh(t))^2 + (\operatorname{sech}(t))^2 = 1$
- (d) $\operatorname{sech}(t) > 0$
- (e) Prove that $\tanh(t)$ is a strictly increasing function. That is, if $t_1 < t_2$, then $\tanh(t_1) < \tanh(t_2)$.